Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Noor Azilah M. Kasim and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.055$
$w R$ factor $=0.125$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

5-Acetyl-4-methyl-2-phenylamino-1,3-thiazole

The asymmetric unit of the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, contains two crystallographically independent molecules. Both molecules are essentially planar and stabilized by intraand intermolecular hydrogen-bonding interactions to form one-dimensional zigzag polymeric chains parallel to the c axis.

Comment

The title compound, (I), is isostructural with 5-acetyl-4-methyl-2-(o-toluidinyl)-1,3-thiazole (Yamin et al., 2005) and 5-acetyl-4-methyl-2-(2-fluorophenylamino)-1,3-thiazole (Kasim et al., 2005). The asymmetric unit consist of two molecules (Fig. 1). The bond lengths and angles of the molecules are in normal ranges (Allen et al., 1987) and in agreement with the above two compounds. Both molecules are essentially planar, with a maximum deviation of 0.216 (2) \AA for atom O1 in the first molecule and 0.154 (4) \AA for atom C16 in the second molecule. In the ortho-fluorophenylamino analogue, the maximum deviation is 0.127 (3) \AA for the methyl C atom of the acetyl group. There are intramolecular $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2$ and $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 4$ interactions (Table 2). In the crystal structure, the molecules are linked by intermolecular hydrogen-bonding interactions ($\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}, \quad \mathrm{N} 3-$ $\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ii }}$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$; symmetry codes as in Table 2) to form one-dimensional zigzag polymeric chains parallel to the c axis (Fig. 2).

(I)

Experimental

A solution of aniline $(0.93 \mathrm{~g}, 0.01 \mathrm{~mol})$ in acetone $(50 \mathrm{ml})$ was added dropwise to an acetone solution (50 ml) containing an equimolar amount of 3-chloroacetylacetone and ammonium thiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 1 h . The light-yellow solution was filtered off and some colourless crystals were obtained after five days of evaporation (yield 80%, m.p. 430.6-431.3 K).

Received 12 October 2005 Accepted 17 October 2005 Online 22 October 2005

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=232.30$
Monoclinic, $P 2_{\mathrm{L}} / c$
$a=12.932(6) \AA$
$b=7.532(3) \AA$
$c=24.322(11) \AA$
$\beta=101.236(9)^{\circ}$
$V=2323.6(18) \AA^{3}$
$Z=8$
$D_{x}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1480 reflections
$\theta=1.6-26.0^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.31 \times 0.19 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.924, T_{\text {max }}=0.969$
11081 measured reflections
4065 independent reflections
2637 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-15 \rightarrow 14$
$k=-7 \rightarrow 8$
$l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0551 P)^{2}\right. \\
& \quad+0.1476 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C7	$1.734(3)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.414(4)$
S1-C8	$1.742(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.317(3)$
S2-C19	$1.731(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.371(3)$
S2-C20	$1.744(3)$	$\mathrm{N} 3-\mathrm{C} 19$	$1.364(3)$
O1-C11	$1.219(3)$	$\mathrm{N} 3-\mathrm{C} 18$	$1.406(4)$
O2-C23	$1.223(3)$	$\mathrm{N} 4-\mathrm{C} 19$	$1.309(3)$
N1-C7	$1.354(4)$	$\mathrm{N} 4-\mathrm{C} 21$	$1.372(3)$
C7-S1-C8	$88.65(14)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 9$	$110.3(2)$
$\mathrm{C} 19-\mathrm{S} 2-\mathrm{C} 20$	$88.56(14)$	$\mathrm{C} 19-\mathrm{N} 4-\mathrm{C} 21$	$109.9(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 14 \cdots \mathrm{~N} 2^{\text {i }}$	0.93	2.37	2.991 (4)	124
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 4^{\text {i }}$	0.93	2.30	2.917 (4)	123
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.86	1.95	2.788 (4)	166
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {iii }}$	0.86	2.02	2.872 (4)	171
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.57	3.288 (4)	135

Symmetry codes: (i) x, y, z; (ii) $x-1, y, z$; (iii) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$.
After their location in a difference map, all H atoms were repositioned geometrically at ideal positions and allowed to ride on the parent C atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl and $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ for aromatic and amine groups.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve

The asymmetric unit of (I), with 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.

Packing diagram of (I), viewed down the b axis. The dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.
structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and the Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Kasim, N. A. M., Akbari, B. \& Yamin, B. M. (2005). Acta Cryst. E61, o3490o3491.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, B. M., Kasim, N. A. \& Akhiar, E. (2005). Acta Cryst. E61, o1478-o1479.

